

Navigation mesh generation – Javid Ladhani

Navigation Mesh Generation

Javid Ladhani

140629

In this document I write about my progress in

creating a custom navmesh for Unreal Engine

and the decisions I have made. The goal is to

learn about navigation mesh generation and to

create a good piece for my portfolio. One of

the biggest improvements I want to implement

is 3-axis navmesh generation, Recast(Unreal’s

navmesh generator) can only generate

navigation meshes on 2 axis. The 3 axis

navigation mesh would be able to generate

navigation meshes on the walls or ceiling. In

this project I will probably use algorithms that

are easier to implement at the cost of

performance. I can always optimize when the

generator is implemented.

2

Plan
My first step is to create a connection between Unreal Engine and my library(Atlas) using an interface. Atlas

should receive collision data and give back a navigation mesh. The interface between the engine and Atlas

makes sure that Atlas is not dependable on Unreal Engine and thus can be easily used for other projects or

Engines.

After the connection has been made I can start implementing Atlas.

1. Implement a Heightfield Structure

2. Voxelize collision to the Heightfield.

3. Generate Open Heightfield

4. Generate a distance field and use it to build regions

5. Generate a contour mesh

6. Generate convex polygon mesh

7. Generate Detailed mesh

I start with a generator that uses 2 axis because I have no experience with building a navmesh Generator.

When the generator with 2 axis is finished I will start implementing a 3 axis generator.

It may be necessary to build a pathfinder for Atlas since the pathfinder of Unreal Engine uses the Recast

navmesh.

3

The implementation

The interface
In Unreal’s settings a navigation generation system can be set for an agent type. This system has to be derived

from ANavigationData. The class I created is called AAtlasNavMesh .

Code Snippet 1

AAtlasNavMesh has to inherit these three functions:

• FindPath

The navigation system calls this function whenever a agent tries to find a path.

• ConditionalConstructGenerator

Constructs and sets the generator which generates the navmesh. This function is called at the start of the game

or editor or whenever the generator needs to be refreshed. It is conditional because sometimes there is no

need to spawn a generator, for example when runtime navigation generation is not supported it should not

spawn a generator when not in the editor. The generator should be an object derived from FNavDataGenerator

and is set to a variable called NavDataGenerator in ANavigationData.

• ConstructRenderingComponent

constructs a component that contains the debug rendering of the navmesh. This is called every time the

rendering flag of the navigation system is set to dirty.

4

The most important function is

ConditionalConstructGenerator

because it spawns the generator

which will eventually ask Atlas to

generate a navigation mesh. I

created FAtlasGenerator as seen in

Code Snippet 2 and there are 2

ways currently implemented to

rebuild areas. RebuildAll which gets

called if the button Rebuild

Navigation in the editor gets pressed

and RebuildDirtyAreas which gets

called when one or more navigation

areas are moved.

In both RebuildAll and

RebuildDirtyAreas the DirtyAreas

array gets filled with the dirty areas.

Every tick ProcessDirtyAreas(Code

Snippet 3) is called which picks up

these dirty area’s and spawns a sub

generator for it.

It was not necessary to create a

sub-generator for each dirty area. I

could’ve just called Atlas code from

here. But I want to extent this to

multithreading later in the progress,

in which I want to put each area

generation in a different thread. This

will speed up the generation and

the editor will not get stuck when it is

 generating the nav meshes.

Code Snippet 2

Code Snippet 3

5

AreaGenerator is a simple class. Only data he needs is its NavigationBounds which is provided when

constructing the object and a reference to the main generator. Then DoWork is called to generate the

navigation mesh data which is then stored into rasterContext. The main generator can read the rasterContext

when the AreaGenerator is done.

The Atlas functions are called in the DoWork function which fill the rastercontext.

Code Snippet 4

Code Snippet 5

6

The heightfield Structure
A heightfield is formed when voxelizing an object and connecting all

voxels connecting on top and bottom of a voxel to create spans. An

example heightfield is shown in figure 1, a red span represents

collision.

First I need to define the structure of a heightfield. It needs to include

the size of the heightfield in world units and the size of the voxels. It

also needs to hold the spans.

spans is an array of pointers to spans which size is the width times the

depth of the field. If a pointer to a span is a nullptr then there is no

span on that location. The spans have a pointer to a span on the same

x and y position but higher in z.

Code Snippet 6. Link

The heightfield needs to be allocated and initialized with CreateHeightfield which sets the variables and

allocates a chunk of data for the spans.

Figure 1. A Heightfield. Retrieved from
http://www.critterai.org/projects/nmgen_study/
heightfields.html

https://swarm1.nhtv.nl/files/Projects/Y2015A-Y2-Javid140629/Y4-P1/AtlasProject/Source/AtlasProject/Atlas/Atlas/Atlas.cpp
https://swarm1.nhtv.nl/files/Projects/Y2015A-Y2-Javid140629/Y4-P1/AtlasProject/Source/AtlasProject/Atlas/Atlas/Atlas.cpp

7

Code Snippet 7. Link

 Voxelizing
Voxelizing is converting a 3d model based on triangles to a

3d model based on cube volumes. Voxelizing an object is

done by voxelizing every triangle in that object. There are

many different methods to Voxelize an object but I am

using the Sutherland-Hodgman algorithm to create the

voxels.

The Sutherland-Hodgman algorithm works by clipping a polygon in a box looping though all sides of the box like

seen in Figure 3. When a side of the box is being examined it loops

though all the lines in the polygon and saves the new polygon. It

follows these rules.

1. When the edge is inside, the second vertex is saved

2. When the edge is leaving, the intersection is saved

3. When the edge is outside, nothing is saved

4. When the edge is entering, save the intersection and the second

vertex.

I am using the definition “inside” and “outside” in the ruleset. When

examining the edge of the box, the side of the box is the inside. The

other side is outside.

Figure 2. Voxelizing an object. Retrieved from
https://static.giantbomb.com/uploads/scale_small/0/28
91/804743-voxel_pixelart.jpg

Figure 3. Sutherland-Hodgman
algorithm. Adapted and retrieved from
https://www.cs.helsinki.fi/group/goa/vie
wing/leikkaus/FIG2.GIF

https://swarm1.nhtv.nl/files/Projects/Y2015A-Y2-Javid140629/Y4-P1/AtlasProject/Source/AtlasProject/Atlas/Atlas/Atlas.cpp
https://swarm1.nhtv.nl/files/Projects/Y2015A-Y2-Javid140629/Y4-P1/AtlasProject/Source/AtlasProject/Atlas/Atlas/Atlas.cpp

8

I have expanded this algorithm to 3d. which clips a 3d

triangle in a 3d box. I have replaced the line-line

intersection with a line-plane intersection algorithm

which is not exactly a line-plane algorithm. In my

algorithm it can only calculate planes which are axis

aligned to make the algorithm cheaper. Figure 4 shows

an image from this video, in this video the red polygon

is the resulted clipped polygon from the green triangle.

So if we run this algorithm and there are no vertices

left that means the triangle doesn’t collide with the

voxel? Correct but if we have to do this for every voxel it can be rather expansive and I could’ve used a much

cheaper algorithm to determine if the triangle was hitting the box. The big benefit using this algorithm is that it is

possible to get the top and bottom vertex from the clipped polygon. Instead of clipping the triangle to a voxel, I

clip the triangle to a box which represents a column of voxels. Every voxel between the top and bottom vertex

from the clipped triangle is a solid voxel like seen in figure 5.

This way I can loop though all columns underneath the triangle like seen in figure 4 and use the algorithm to

find the solid voxels.

In Figure 8 we see the result of a voxelized rotated cube. The green boxes are the combined voxels called

spans. There is an empty space inside the cube because there is no mesh to make solid spans. There are still

Figure 5. Voxels of triangle. Retrieved from
http://www.critterai.org/projects/nmgen_study/
media/images/shfg_02_clipping.jpg

Figure 6. Footprint of triangle. Retrieved from
http://www.critterai.org/projects/nmgen_study/media
/images/shfg_01_aabb.jpg

Figure 4. clipping triangle

https://swarm1.nhtv.nl/files/Projects/Y2015A-Y2-Javid140629/Y4-P1/video%27s/PolygonClipping.mp4

9

spans at the bottom of the cube which surface is inside the cube. There is no need to create a navigation mesh

on these surfaces since we don’t want any navigation inside the cube but these spans can’t be deleted because

they are needed in the open heightmap. The solution is to set their state to not walkable when the triangle

which generated the voxel is facing down, this is represented by rendering the span red.

Open Heightfield
An open heightfield is the inverse of a heightfield. It defines the open spaces in an area. The structure is

different from the normal Heightfield because it integrates neighbours into the spans.

Figure 8. A voxelized rotated cube Figure 7. The bottom of a voxelized rotated cube
showing the non-walkable spans

Code Snippet 8

10

Code Snippet 9. Link

In the Heightfield class the spans are stored in a double array which causes a lot of memory jumping when

iterated though. But it was necessary to have a dynamic sizable list because it did not know how many spans

are being generated. Now that we know the exact amount of spans it can be compressed into a single array.

I could have stored the location of the spans inside the spans itself but that makes the data bigger and it is

harder to iterate though locations. We can iterate though location by getting the correct columns index

(column[x+y*fieldWidth]). Inside a column the index of the first span in the spans array is stored along with the

amount of spans. So for example column[5+2*fieldWidth] has index 5 and count 3, this means the spans[5] to

spans[5+3] are the spans for that location.

https://swarm1.nhtv.nl/files/Projects/Y2015A-Y2-Javid140629/Y4-P1/AtlasProject/Source/AtlasProject/Atlas/Atlas/Atlas.h

11

The spans now also include the connection data to neighbours which are walkable from this span. The

neighbour is considered walkable if the following conditions are met:

 - The step up or down between the floors of the two spans is less than the set value(Figure 10)

 - The gap between the two spans is big enough to be travers by an agent(Figure 10)

In my further examples only the bottom of the open spans are

shown in images. The spans still include the height but is

easier to visualize when only its floor is drawn.

In Figure 11 we can see the open height field with a

mannequin in it. Spans are generated on places that are

actually high enough for the character to pass though.

Figure 10. step up/down neighbours. Retrieved
from :http://www.critterai.org/projects/nmgen_stud
y/media/images/ohfg_02_steplinks.jpg

Figure 10. head bump. Retrieved
from :http://www.critterai.org/projects/nmgen_study
/media/images/ohfg_03_headbonk.jpg

Figure 11. An open height field with mannequin

12

Region Generation
Now that a walkable area has been generated it needs to be transformed into a polygon mesh. To define the

polygons the open heightfield needs to be divided into

regions. I’ll be using the watershed algorithm for this. This

algorithm separates adjacent drainage basins by slowly

flooding the area and build barriers where the different water

sources meet.

Since the open heightfield doesn’t have many height differences on a flat area I am using the distance to a

border span as “flood height”. A border span is a span with less than 4 neighbours. So border spans are the

last to flood and the spans furthers away from the border spans are the first to flood.

Distance field generation

A distance field is generated from the open heightfield. It

represents how far each span from the open heightfield is from the

border. A span is considered a border when it has at less than 4

neighbours.

Figure 12. Distance field example

13

First I need to get the border

spans. A span can have on of 3

states:

OPEN,INPROGRESS,CLOSED.

All the spans start open and they

should all be closed at the end of

the algorithm.

First it needs to get the border

spans by checking every span if

they have less than 4 neighbours.

Their status is set to

INPROGRESS and they are put

into the handling list.

Code Snippet 10

Then the main part of the

algorithm gets the first span out of

the handling queue sets it to

closed and applies the following

rules to its neighbours:

- If it is OPEN it will be placed in

handling and it’s distance will be

updated.

- If it is INPROGRESS then the

distance may be updated if the

new distance is smaller.

- If it is CLOSED and it’s distance

needs to be updated because it is

smaller than the distance will be

updated and the neighbour is put

in the handling list again because

it’s neighbours may require

updating.

This continuous until the handling

queue is empty

Code Snippet 11

14

With this algorithm a distance field is generated(Figure 13).

The spans closer to the edge are darker then spans further

away from the edge

The watershed algorithm

To create regions the distance field will be slowly flooded with the following rules each iteration:

1. Flood current basins equally

2. Find new basins with the current water height and fill them.

3. Repeat

Code Snippet 12

Figure 13. A distance field

15

Code Snippet 12 loops though all waterlevels from on the distance field from high to low. It starts at the

maximum waterlevel and ends at charactersize. Characters have a certain width and there is no need to

generate a navigation mesh next to the wall when the

character can’t walk there.

For every waterlevel GrowRegions is called which grows

regions to the new level. This needs to be done equally if not

then a region can have domination over another region

based on who gets updated first as seen in Figure 13. After

aall regions are grown equally it searches for spans with that

height and if they have no region yet a new region will be

created. This new region floods its neighbours with the same

height until there are no neighbours with that height left

anymore.

After all spans have a regions HandleSmallRegions is called. Which tries to merge small regions with its

neighbours regions. If it can’t merge regions it will delete them.

Contour Generation
The regions can now be used to generate a contour mesh which has a contour in it for each region. The

contourmesh has an array of Contours in it. Contours have an array of vertices and an array of neighbours.

Figure 14. Equal region regeneration

Figure 15. Region generation

16

Code Snippet 13

17

A contour is generated by walking over the edge of a region

as seen in Fout! Verwijzingsbron niet gevonden.. Here

we see edge walking in progress. Currently our last edge we

walked on is facing right and has a normal facing up

because that is the side which has a span that not belongs

to the region. There are 2 important spans which are

defined as span 1 and span 2, it depends on these two

spans where our next edge should be.

1. If both spans are owned by the region then our next edge

is going outwards, in this case up.(Figure 17)

2. If span 1 is not owned by the region but span 2 is then the

edge continues on its path, in this case right.(Figure 18)

3. If both spans are not owned by the region then our next

edge is going inwards.(Figure 19)

Figure 16. Region edge walking

Figure 19.Edge walking case 3

Figure 18.Edge walking case 2

Figure 17. Edge walking case 1

18

Now that an contour* is generated it still needs to be

simplified. There are now way too many vertices in

the contour which we don’t need. Even on straight

lines there is a vertex for each span.

The only mandatory vertices are the vertices where

there is a change in region connection. Between

these mandatory vertices are portals. Portals can

either have a region-region connection or a region-

null connection.

Both portals are treated differently when it’s

simplified. Region-region portals are simplified by

discarding all the vertices between the mandatory

vertices. Region-null portals are a bit trickier. These portals

need to keep their shape.

The goal of the algorithm is to keep the shape of the edge

between the mandatory vertices with as few vertices as

possible. I use the Douglas-Peucker algorithm to achieve

this. It starts off with just the mandatory vertices(Figure 21)

and it searches for the vertex that is furthest away from the

simplified edge. If the distance between the edge and vertex

is bigger than maxdeviaton then the simplified edge splits in

2 with the vertex as middle point(Figure 22). It repeats this

progress until all vertices have a smaller distance to the

simplified edge then maxdeviation(Figure 23).

Figure 21. douglas-peucker algorithm

Figure 22. douglas-peucker algorithm 2 Figure 23. douglas-peucker algorithm 3

Figure 20. portals

19

The algorithm is rather big so I divide it into 4 parts:

- setup

- edge walking

- portal cleaning

- finalizing

All the variables in code are initialized and set. It searched for a span that lies next to a other region or no

region and saved as the current span. The first 2 vertices are saved into the verts array and other variables are

set based on the currentspan.

Code Snippet 14

20

In Code Snippet 15 the loop starts, it first calculates span 1 and 2 as described before and checks if the walking

goes outward, forward or inward.

The new span location, the direction, currentcorner and newVert are saved.

Code Snippet 15

21

Code Snippet 16 is still in the while loop. Every edge we walk it walks it checks if the other side of the edge

changes region. oSpan3 is the span on the other side of the edge. If the oSpan3 is different from otherRegion

then it is the end of the portal and it will clean that portal depending on the type of portal. The cleaned edge is

saved in the finalVerts array.

There is an exception which is the first portal. The algorithm starts on a random edge span which can be in the

middle of a portal. The first portal will be saved separately and merged with the last portal if they are the same

type and share the same region.

Code Snippet 16

22

Code Snippet 17 is still in the while loop. It checks if the current vertex is the same as the starting vertex. If that

is true then it means we have done a full loop though the polygon. First thing it checks is if it already has

submitted portals in finalVerts. If not then the polygon is completely surrounded by a null region and the whole

polygon needs to be cleaned as a region-null portal.

If it has submitted portals is going to examine the first portal and last portal. If they are from the same region it

going to merge and undergo a clean. If they a different from region they get submitted separately.

The while loop will break if the current vertex is the same as the start vertex. If not then the newVert which was

calculated by walking is submitted to the verts array.

Code Snippet 17

The finalVerts array contains the final cleaned contour data and is saved into the outContour.

23

Polygon Mesh
The contour mesh is now needs to be compressed into a polygon mesh. Vertices are not saved in a central

location so there are duplicates when vertices in 2 separate regions have the same position.

Here we see the data structure of the PolyMesh which consists of an array of vertices and an array of polygons.

A polygon has an array of indexes of vertices in the polymesh.

Code Snippet 18

Code Snippet 19 loops though all the contours in the contour mesh and copies over the vertices to the poly

mesh if they are not already in there.

Figure 24.Contour Generation

24

a

Code Snippet 19

The polygon mesh looks exactly the same as the contour mesh when drawn but the polygons are now

connected

25

NavMesh

Ear Clipping

It is already possible to use a pathfinder to find a path between points on the polygon mesh but it is cheaper to

find path on a triangle mesh. The polygon mesh has to be triangulated. I first used an ear clipping algorithm. A

polygon with 4 or more vertices always has at least 2 ears. An ear is a vertex which is non-reflex, reflex

meaning the angle of the vertex of 180 degrees or above. This resulted in some unexpected results, a triangle

mesh was generated but it wasn’t the most optimal mesh. It had weird edges which probably would result in a

higher error in the pathfinder. (Figure 25 and Figure 26)

Min Area

Ear Clipping is an easy to implement algorithm but generates a

low quality navigation mesh. Another algorithm always

guarantees that the mesh has the minimal surface area. It uses

the following expression:

Figure 25. Triangulation error front Figure 26. Triangulation error side

Figure 27

26

The polygon D has 2 vertices who are connected which form the

access edge. Any other vertices in D can join the access vertices to

form triangle t. in D there are 6 possible ways to form t.

The area of D is the area of t + the area of D1 + the area of D2. This is

calculated for all t’s and the one with the smallest area is the optimal

mesh. D1 and D2 are calculated with the same equation so this is

recursive.

This gives a really good mesh but is quite heavy because it generates

all possible ways to form a triangle mesh out of the polygon mesh

First I set up the triangulator by feeding it the polygon with Init(). Then it calculates the t’s with the least costs

with CalcleastCost(). After this a tree with all possible meshes is generated and the cheapestmesh is saved

with SaveCheapeastTriangles().

Figure 28

Code Snippet 20

27

In the Init function it generates all possible t’s as splits.

Code Snippet 22

The CalcLeastCost function calculates the cheapest polygon from bottom of the tree to the top and is thus

recursively solved. GetCost of a split calculates how big the area is with t+D1+D2.

Code Snippet 21

28

The Result

29

 3 Axis Navigation Mesh
There are multiple ways to implement a 3 axis navigation mesh but because I have created a 2 axis navigation

mesh already I will be modifying it to support 3 axis. If a 2 axis Navigation mesh is generated 6 times, 1 time for

each axis positive and negative with a supported angle of 45 degrees then the 6 meshes could be merged

together to 1 big navigation mesh.

Not every step in the 2 axis navigation mesh generator has to be performed 6 times to generate 6 navigation

meshes. Some can be modified.

.1 The voxelizing

voxelizing can be done in 1 step because the voxels aren’t going the change when changing axis but because it

is easier for now I will voxelize once for each axis because there is a need of a top and a bottom on each span.

.2&3 Region generation & contour generation

regions and contours have be generated 6 times for each axis positive and negative.

.4 Polygon Generation

polygons can be generated using all the contour meshes and merged to 1 polygon mesh

.5 Navigation mesh

Is generated from the single polygon mesh

This approach did not work, it only works when the

navigation mesh is 90 degrees from each other. Because

on slopes the generator will generate multiple navigation

meshes on top of each other.

A solution for this is to merge these overlapping meshes

or to change a region generation to a 3d region generation

which can also change direction.

Another solution is to change the heightfields to

voxelfields. The openheightfield has surfaces with are all

the same orientation, with voxelfield I can change the

orientation and generate a region on the floor and

walls(Figure 29).

30

With this 3d region I can generate the

polygon mesh fairly easy which can be

converted into a 3 axis navigation mesh.

Testing
I didn’t had any time to test extensively yet but I have made plans for testing. The navmesh should be tested on

the following:

• Usability

• Speed of Generation

• Robustness

Usability
Atlas should be used in a developer environment so it’s best to test it that way. There are 2 test, the usability of

developers that use Atlas which is already implemented into an Engine and the usability of developers that has

to implement Atlas into an Engine.

The first case is testable using the already implemented Atlas into Unreal Engine. I need to ask at least 10

developers which have experience with creating navmeshes in Unreal to use my system. The testers need to fill

in a form and I make notes while observing them.

Figure 29

31

The second case is a bit harder to test since not many people have the time or the engine to implement Atlas. If

I don’t find a tester I have to implement Atlas myself into another Engine.

 Speed of Generation
Every step of the generation can be measured in the number of operations. This should be tested multiple

times on different maps. A simple geometry and a detailed geometry which also both have different sizes. This

way I also test scalability. This data should be used in further optimizations.

 Robustness
Robustness can be described as the program being to cope with errors during execution and is hard to test.

One of the methods to test this is fuzz testing, where invalidated data is used, the outcome would be an

invalidated nav mesh but the program should not crash. Another test is to input a large amount of data to check

tests when the program runs out of memory.

I tested ona small case. 2 developers implemented atlas in a dummy environment because we didn’t have a

custom game engine available. It took them about 1 hour to implement Atlas using the doxygen documents. I

didn’t provide any help in the implementation, I only observed. After implementation they used Unreal Engine to

generate a navigation mesh. They said the navigation mesh looks nice but they had some crashes which

means Atlas isn’t very robust yet.

32

Reflection
This project was very interesting with something new with every step. To create the navmesh I had to

implement 7 systems as described in the plan at the start of this document. With the start of each step I had to

research, implement and bug fix it. The hardest steps were:

- Voxelizing

- Contour generation

- Triangulation

Voxelization was an easy algorithm but because of the large amount of data hard to debug. I was also

working with the engine which had to provide the collision data which was hard to obtain and which had to

be transformed into data that Atlas would understand. Because I didn’t know how Unreal Engine delivers

the collision data I spend an a lot of time dissecting Recast which is implementing in Unreal Engine. I was

stubborn because I wanted to it myself while I also could’ve asked someone else who has that knowledge.

After I completed the project I joined a Unreal Dev Group which also contains several people who work for

Epic.

Contour generation was also a simple algorithm but it was a big algorithm around 400 lines of code. This

also made it hard to debug and the more code the more chance on a bug. If I would write this algorithm

again it would probably not be this large and less prone to errors. Maybe in the future when I have more

programming experience I can see these problems before I start writing an algorithm.

Triangulation was a hard algorithm and hard to debug. I had a hard time choosing a algorithm while

researching triangulation. I never done 3d triangulation before so I wanted to start with an easy algorithm

which probably wasn’t the optimal mesh. I choose to adapt the ear clipping algorithm which is used in 2d

triangulation. This adaptation worked and the mesh was triangulated but it was far from the optimal mesh, it

had many errors and had to be replaced. Unfortunately I didn’t had enough time to replace it.

I did underestimated almost every step of the implantation how much time it would take. I already knew that it

very step would take quite some time so I planned extra time for it but I still went over it. This is due to the fact

that I had never created something this big before and most of the content in this project was new for me.

The 3 axis generator does work but only for 90 degree angles, I have to improve the algorithm in the future to

make it fully work. Unfortunate I don’t had any time to complete the pathfinder, this means the characters in-

game can’t use the navigation mesh yet.

33

I am quite happy with the results of the project. I wanted to do more like optimizing the code and comparing it

with Recast but I got at least Atlas working. My goal was to learn about navigation meshes and create a nice

piece for my portfolio, both are a success. I learned a lot from this project as can be seen in this document and I

created a nice video which shows all the steps in the generation of the navigation mesh. Next to learning about

generation a navigation mesh I also got better at programming because I programmed a lot and I know now

that certain things work and don’t work.

https://swarm1.nhtv.nl/files/Projects/Y2015A-Y2-Javid140629/Y4-P1/video%27s/Atlas.mp4

